High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes.
نویسندگان
چکیده
Using high-throughput sequencing, we devised a technique to determine the insertion sites of virtually all members of the human-specific L1 retrotransposon family in any human genome. Using diagnostic nucleotides, we were able to locate the approximately 800 L1Hs copies corresponding specifically to the pre-Ta, Ta-0, and Ta-1 L1Hs subfamilies, with over 90% of sequenced reads corresponding to human-specific elements. We find that any two individual genomes differ at an average of 285 sites with respect to L1 insertion presence or absence. In total, we assayed 25 individuals, 15 of which are unrelated, at 1139 sites, including 772 shared with the reference genome and 367 nonreference L1 insertions. We show that L1Hs profiles recapitulate genetic ancestry, and determine the chromosomal distribution of these elements. Using these data, we estimate that the rate of L1 retrotransposition in humans is between 1/95 and 1/270 births, and the number of dimorphic L1 elements in the human population with gene frequencies greater than 0.05 is between 3000 and 10,000.
منابع مشابه
Genome variation discovery with high-throughput sequencing data
The advent of high-throughput sequencing (HTS) technologies is enabling sequencing of human genomes at a significantly lower cost. The availability of these genomes is hoped to enable novel medical diagnostics and treatment, specific to the individual, thus launching the era of personalized medicine. The data currently generated by HTS machines require extensive computational analysis in order ...
متن کاملCombinatorial Algorithms for Structural Variation Detection in High Throughput Sequenced Genomes
Recent studies show that along with single nucleotide polymorphisms and small indels, larger structural variants among human individuals are common. The Human Genome Structural Variation Project aims to identify and classify deletions, insertions, and inversions (>5 Kbp) in a small number of normal individuals with a fosmid-based paired-end sequencing approach using traditional sequencing techn...
متن کاملChapter 6: Structural Variation and Medical Genomics
Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated ...
متن کاملEducation Chapter 6 : Structural Variation and Medical Genomics
Differences between individual human genomes, or between human and cancer genomes, range in scale from single nucleotide variants (SNVs) through intermediate and large-scale duplications, deletions, and rearrangements of genomic segments. The latter class, called structural variants (SVs), have received considerable attention in the past several years as they are a previously under appreciated ...
متن کاملمروری برتکنیک های توالی یابی DNA (نسل اول، نسل دوم و نسل سوم)
Introduction: The DNA sequencing is the most important technique in molecular biology by which the order of the nucleotides can be identified in a piece of DNA. There are several different methods for sequencing the DNA. Now, the DNA sequencing has great importance in the medical diagnostics and other medical fields. Some methods have been invented to speed up and increase the efficiency of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genome research
دوره 20 9 شماره
صفحات -
تاریخ انتشار 2010